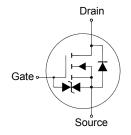
## MMFTN3019E


### **N-Channel Field Effect Transistor**

### **Applications**

· Interfacing, switching

#### **Features**

- · Low on-resistance
- · Fast switching speed
- Low voltage drive makes this device ideal for portable equipment
- Drive circuits can be simple
- · Parallel use is easy





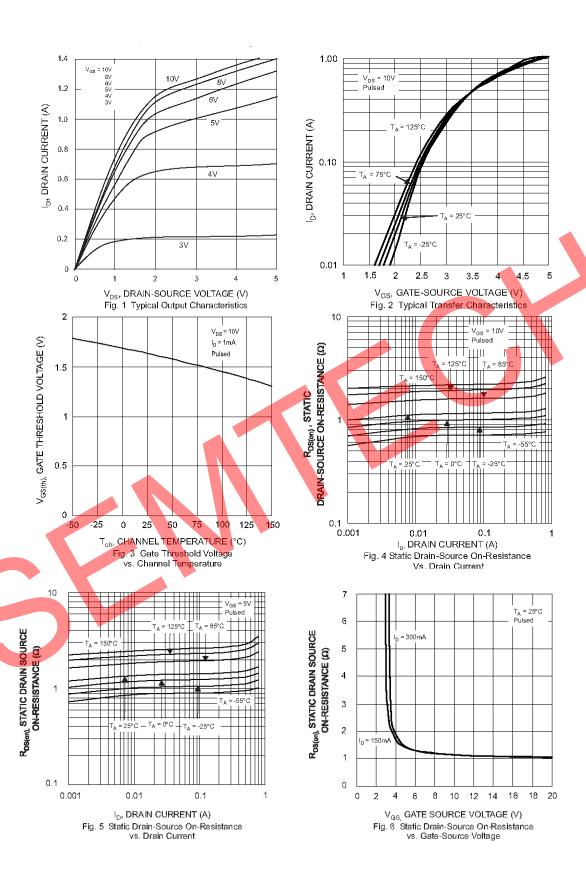
1.Gate 2.Source 3.Drain SOT-523 Plastic Package

Absolute Maximum Ratings ( $T_a = 25 \, ^{\circ}$ C)

| Absolute Maximum Natings (1a = 25°C)                 |                  |                              |      |
|------------------------------------------------------|------------------|------------------------------|------|
| Parameter                                            | Symbol           | Value                        | Unit |
| Drain-Source Voltage                                 | V <sub>DSS</sub> | 30                           | V    |
| Gate-Source Voltage                                  | V <sub>GSS</sub> | ± 20                         | V    |
| Drain Current - Continuous<br>Drain Current - Pulsed | I <sub>D</sub>   | ± 100<br>± 400 <sup>1)</sup> | mA   |
| Total Power Dissipation                              | P <sub>tot</sub> | 150 <sup>2)</sup>            | mW   |
| Channel temperature                                  | $T_ch$           | 150                          | °C   |
| Storage Temperature Range                            | T <sub>stg</sub> | - 55 to + 150                | °C   |

<sup>&</sup>lt;sup>1)</sup>P<sub>W</sub> ≤ 10 µs, Duty cycle ≤ 1 %




<sup>2)</sup> With each pin mounted on the recommended lands

# MMFTN3019E

## Characteristics at T<sub>a</sub> = 25 °C

| Characteristics at T <sub>a</sub> = 25 °C                                                                            | I                    |      |      | I       | 1    |
|----------------------------------------------------------------------------------------------------------------------|----------------------|------|------|---------|------|
| Parameter                                                                                                            | Symbol               | Min. | Тур. | Max.    | Unit |
| Drain-Source Breakdown Voltage at $I_D$ = 10 $\mu$ A                                                                 | V <sub>(BR)DSS</sub> | 30   | -    | -       | V    |
| Zero Gate Voltage Drain Current at V <sub>DS</sub> = 30 V                                                            | I <sub>DSS</sub>     | -    | -    | 1       | μΑ   |
| Gate-source Leakage at $V_{GS} = \pm 20 \text{ V}$                                                                   | I <sub>GSS</sub>     | ı    | ı    | ± 1     | μΑ   |
| Gate-Source Threshold Voltage at $V_{DS}$ = 3 V, $I_D$ = 100 $\mu$ A                                                 | $V_{GS(th)}$         | 0.8  | ı    | 1.5     | V    |
| Static Drain-Source On-Resistance at $V_{GS}$ = 4 V, $I_D$ = 10 mA at $V_{GS}$ = 2.5 V, $I_D$ = 1 mA                 | R <sub>DS(on)</sub>  | 1 1  |      | 8<br>13 | Ω    |
| Forward transfer admittance at $V_{DS} = 3 \text{ V}$ , $I_D = 10 \text{ mA}$                                        | y <sub>fs</sub>      | 20   |      | -       | ms   |
| Input Capacitance at V <sub>DS</sub> = 5 V, f = 1 MHz                                                                | C <sub>iss</sub>     | -    | 13   | -       | pF   |
| Output Capacitance<br>at V <sub>DS</sub> = 5 V, f = 1 MHz                                                            | Coss                 | -    | 9    | -       | pF   |
| Reverse Transfer Capacitance<br>at V <sub>DS</sub> = 5 V, f = 1 MHz                                                  | C <sub>rss</sub>     |      | 4    | -       | pF   |
| Turn-On delayTime at $V_{DD}$ = 5 V, $I_{D}$ = 10 mA, $V_{GS}$ = 5 V, $R_{L}$ = 500 $\Omega$ , $R_{G}$ = 10 $\Omega$ | t <sub>d(on)</sub>   | ı    | 15   | ı       | ns   |
| Turn-Off Delay Time<br>at $V_{DD}$ = 5 V, $I_D$ = 10 mA, $V_{GS}$ = 5 V, $R_L$ = 500 $\Omega$ , $R_G$ = 10 $\Omega$  | $t_{d(off)}$         | -    | 80   | -       | ns   |
| Rise Time at $V_{DD}$ = 5 V, $I_D$ = 10 mA, $V_{GS}$ = 5 V, $R_L$ = 500 $\Omega$ , $R_G$ = 10 $\Omega$               | t <sub>r</sub>       | -    | 35   | -       | ns   |
| Turn-off delay time at $V_{DD}$ = 5 V, $I_D$ = 10 mA, $V_{GS}$ = 5 V, $R_L$ = 500 $\Omega$ , $R_G$ = 10 $\Omega$     | t <sub>f</sub>       | -    | 80   | -       | ns   |







