
LL101A...LL101C

Silicon Schottky Barrier Diodes

for general purpose applications

The LL101 Series is a metal on silicon Schottky barrier device which is protected by a PN junction guard ring. The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing and coupling diodes for fast switching and low logic level applications.

This diode is also available in DO-35 case with type designation SD101A, B, C.

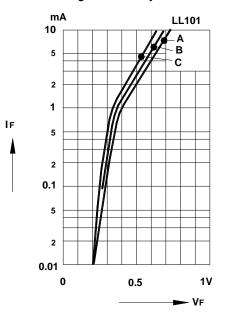
Glass case MiniMELF Dimensions in mm

Absolute Maximum Ratings (T_a = 25 °C)

Parameter		Symbol	Value	Unit
Peak Reverse Voltage	LL101A LL101B LL101C	V _{RRM}	60 50 40	V
Maximum Single Cycle Surge 10 µs Square Wave		I _{FSM}	2	А
Power Dissipation (Infinite Heatsink)		P _{tot}	400 ¹⁾	mW
Junction Temperature		Tj	200	°C
Storage Temperature Range		T _{stg}	- 55 to + 200	°C
¹⁾ Valid provided that electrodes are kept at ambient tempera	ature.			

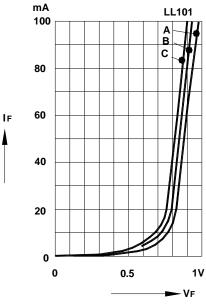
Characteristics at T_a = 25 °C

Parameter		Symbol	Min.	Max.	Unit
Reverse Breakdown Voltage					
at I _R = 10 µA	LL101A	N/	60	-	×7
	LL101B	$V_{(BR)R}$	50	-	V
	LL101C		40	-	
Forward Voltage					
at I _F = 1 mA	LL101A		-	0.41	
	LL101B		-	0.4	
	LL101C	V _F	-	0.39	V
at I _F = 15 mA	LL101A		-	1	
	LL101B		-	0.95	
	LL101C		-	0.9	
Reverse Current					
at V _R = 50 V	LL101A		-	200	- ^
at $V_{\rm R}$ = 40 V	LL101B	I _R	-	200	nA
at $V_R = 30 V$	LL101C		-	200	
Junction Capacitance					
at V_{R} = 0 V, f = 1 MHz	LL101A	C	-	2.0	~F
	LL101B	C _{tot}	-	2.1	pF
	LL101C		-	2.2	
Reverse Recovery Time		4		4	
at $I_F = I_R = 5 \text{ mA}$, recover to 0.1 I_R		t _{rr}	-	1	ns

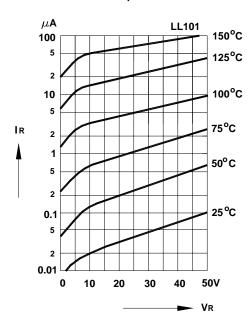


SEMTECH ELECTRONICS LTD.

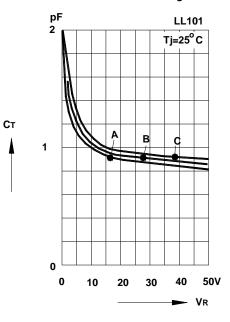
(Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)



Dated : 02/09/2010 Rev:01



Typical variation of fwd. current vs. fwd. voltage for primary conduction through the Schottky barrier


Typical forward conduction curve of combination Schottky barrier and PN junction guard ring

Typical variation of reverse current at various temperatures

Typical capacitance curve as a function of reverse voltage

SEMTECH ELECTRONICS LTD. (Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

Dated : 02/09/2010 Rev:01