SF161CTD THRU SF168CTD

GLASS PASSIVATED SUPER FAST RECTIFIER Reverse Voltage – 50 to 800 V Forward Current – 16 A

Features

- · Low forward voltage drop
- Low reverse leakage current
- Superfast switching time for high efficiency
- High current capability
- High surge current capability

Mechanical Data


• Case: Molded plastic, TO-220

• Epoxy: UL 94V-0 rate flame retardant

• Terminals: leads solderable per MIL-STD-202

method 208 guaranteed

Polarity: As markedMounting Position: Any

Dimensions in inches and (millimeters)

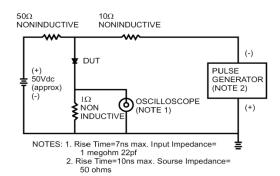
Absolute Maximum Ratings and Characteristics

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Parameter	Symbols	SF161CTD	SF162CTD	SF163CTD	SF164CTD	SF165CTD	SF166CTD	SF167CTD	SF168CTD	Units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	50	100	150	200	300	400	500	600	V
Maximum RMS Voltage	V_{RMS}	35	70	105	140	210	280	350	420	V
Maximum DC Blocking Voltage	V_{DC}	50	100	150	200	300	400	500	600	٧
Maximum Average Forward Rectified Current at T _C = 100°C	I _(AV)	16								Α
Peak Forward Surge Current, 8.3 mS Single half Sine-wave Superimposed on Rated Load (JEDEC method)	I _{FSM}	125								А
Maximum Forward Voltage at 8 A and 25 °C	V_{F}	0.95 1.3 1.7					.7	٧		
	I _R	10 500								μΑ
Typical Junction Capacitance 1)	CJ	80 60						pF		
Maximum Reverse Recovery Time 2)	t _{rr}	35					50			ns
Typical Thermal Resistance 3)	R _{θJC}	2.5								°C/W
Operating and Storage Temperature Range	T _J , T _{Stg}	-55 to +150								°C

¹⁾ Measured at 1 MHz and applied reverse voltage of 4 VDC.

³⁾ Thermal resistance from Junction to case per leg mounted on heatsink.



 $^{^{2)}}$ Reverse recovery test conditions: I_F = 0.5 A, I_R = 1 A, I_{RR} = 0.25 A

FIG.1- REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

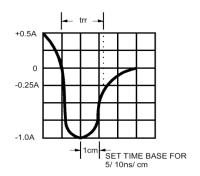
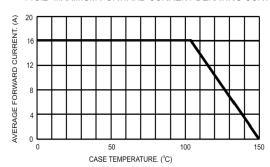
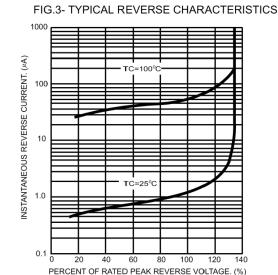




FIG.2- MAXIMUM FORWARD CURRENT DERATING CURVE

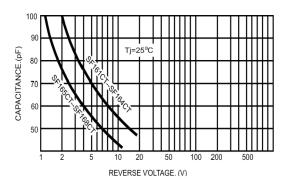



FIG.5- TYPICAL JUNCTION CAPACITANCE PER LEG

NUMBER OF CYCLES AT 60Hz

Subsidiary of Sino-Tech International (BVI) Limited

